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LOGARITHMIC SIGNATURES FOR ABELIAN

GROUPS AND THEIR FACTORIZATION

Pavol Svaba — Tran van Trung — Paul Wolf

ABSTRACT. Factorizable logarithmic signatures for finite groups are the essen-

tial component of the cryptosystems MST1 and MST3. The problem of finding

efficient algorithms for factoring group elements with respect to a given class
of logarithmic signatures is therefore of vital importance in the investigation

of these cryptosystems. In this paper we are concerned about the factorization
algorithms with respect to transversal and fused transversal logarithmic signa-

tures for finite abelian groups. More precisely we present algorithms and their

complexity for factoring group elements with respect to these classes of logarith-
mic signatures. In particular, we show a factoring algorithm with respect to the

class of fused transversal logarithmic signatures and also its complexity based

on an idea of Blackburn, Cid and Mullan for finite abelian groups.

1. Introduction

Logarithmic signatures and covers for finite groups have found interesting
applications in designing cryptographic primitives and pseudo-random number
generators [2]–[7], [9], [11]. Logarithmic signatures and covers are a kind of fac-
torization of a finite group G through its subsets and they induce surjective
mappings from Z|G| onto G. An interesting fact is that these mappings can,
in general, be computed very efficiently. However, if we take a random cover
for a finite group, its induced mapping behaves like a random function, see [9],
thus inverting this mapping becomes an intractable problem. There are strong
indications supporting this fact. On the other hand, the mapping induced by
a logarithmic signature actually is a bijection. As there are various classes of log-
arithmic signatures which have arisen from algebraic structures of groups, the
problem of inverting this bijection needs a careful study. More important is
the fact that logarithmic signatures, whose induced mappings are used as part
of the private key in a public key cryptosystem have to be efficiently invertible,
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see [2], [7], [11]. Hence, the question of inverting the induced bijection for a given
logarithmic signature is of significance. In [6] M a g l i v e r a s and M em o n have
shown that the induced bijections for a specific class of transversal logarithmic
signatures derived from a chain of point stabilizer subgroups for permutation
groups of degree n are invertible with a time complexity of O(n2). In [8] it is
shown that the induced bijection of a certain specific class of transversal loga-
rithmic signatures for elementary abelian 2-groups can be inverted with a time
complexity of O(1), see also [13]. In [1] B l a c k b u r n, C i d and M u l l a n intro-
duce a method for inverting induced bijections of fused transversal logarithmic
signatures for elementary abelian 2-groups. In [11] the problem of inverting these
induced bijections is also discussed.

In this paper we study the inverting problem of the bijections induced from
transversal and fused transversal logarithmic signatures for abelian groups.
We present algorithms and their complexity for the inverting problem. In partic-
ular, we show an algorithm based on the idea of B l a c k b u r n et al. and deter-
mine its complexity. We further study the inverting problem by using trapdoor
information and show that fused transversal logarithmic signatures for abelian
groups are tame with respect to this method.

2. Preliminaries

In this section we briefly present notation, definitions and some basic facts
about logarithmic signatures and covers for finite groups and their induced map-
pings. For more details the reader is referred to [6], [7]. We assume that the reader
is familiar with the basics of group theory. The group theoretic notation used is
standard and may be found in any textbook of group theory. In this paper we
only deal with finite groups.

Let G be a finite group. We define the width of G to be the positive integer
w = ⌈log2 |G|⌉. Suppose that α = [A1,A2, . . . ,As] is a sequence of subsets
Ai = [ai1, . . . ,airi ] ⊂ G, such that

∑s
i=1 |Ai| is polynomially bounded in the

width w of G. Let S be a subset of G. We say that α is a cover for S if every
product a1j1 . . .asjs lies in S and if each element g ∈ S can be expressed in at
least one way as a product of the form

g = a1j1 . . .asjs (2.1)
with aiji ∈ Ai.

If every g ∈ S can be expressed in exactly one way by the equation (2.1),
then α is called a logarithmic signature (LS) for S. If S = G, α is called a cover,
resp., a logarithmic signature for G.

The Ai are called the blocks, and the vector (r1, . . . , rs) with ri = |Ai| the type
of α. We say that α is nontrivial if s > 2 and ri > 2 for 1 6 i 6 s; otherwise α
is said to be trivial. The sum ℓ(α) =

∑s
i=1 ri is defined as the length of α.
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Let Γ =
{

(Gℓ,αℓ)
}

ℓ∈N
be a family of pairs, indexed by the security param-

eter ℓ, where the Gℓ are groups in a common representation, and where αℓ is
a specific cover for Gℓ of length polynomial in ℓ. We say that Γ is tame if there
exists a probabilistic polynomial time algorithm A such that for each g ∈ Gℓ, A
accepts (αℓ, g) as input, and outputs a factorization ϕ(g) of g with respect to αℓ

(as in equation (2.1) with overwhelming probability of success. We say that Γ is
wild if for any probabilistic polynomial time algorithm A, the probability that A
succeeds in factorizing a random element g of G is negligible.

Let γ : G = G0 > G1 > · · · > Gs = 1 be a chain of subgroups of G, and
let Ai be an ordered, complete set of right (or left) coset representatives of Gi

in Gi−1. Then it is clear that [A1, . . . ,As] forms a logarithmic signature for G,
called a transversal logarithmic signature (TLS).

Let G be a permutation group on the set X = {1, . . . ,n}. Consider a chain
of nested point stabilizers G = G0 > G1 > · · · > Gs = 1, where Gi fixes point-
wise the symbols 1, 2, . . . , i, for any i > 1. It is shown in [6] that a specific
constructed class of transversal logarithmic signatures from this chain of sub-
groups has a factorization with a time complexity of O(n2). In general, the
problem of finding a factorization in equation (2.1) with respect to a given cover
is presumedly intractable. There is strong evidence in support of the hardness of
the problem. For example, let G be a cyclic group and g be a generator of G. Let
α = [A1,A2, . . . ,As] be any cover for G, for which the elements of Ai are written
as powers of g. Then the factorization with respect to α amounts to solving the
Discrete Logarithm Problem in G.

The main point making covers and LS interesting for use in cryptography
is that if the above factorization problem is intractable, they essentially induce
one-way functions. This can be described as follows. Let α = [A1,A2, . . . ,As]

be a cover of type (r1, r2, . . . , rs) for G with Ai = [ai,1,ai,2, . . . ,ai,ri ] and let

m =
∏s

i=1 ri. Let m1 = 1 and mi =
∏i−1

j=1 rj for i = 2, . . . , s. Let τ denote the
canonical bijection from Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs on Zm; i.e.,

τ : Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrs → Zm,

τ(j1, j2, . . . , js) :=

s
∑

i=1

jimi.

Using τ we now define the surjective mapping ᾰ induced by α.

ᾰ : Zm → G,

ᾰ(x) := a1,j1 · a2,j2 · · ·as,js ,

where (j1, j2, . . . , js) = τ−1(x). Since τ and τ−1 are efficiently computable,
the mapping ᾰ(x) is efficiently computable.

3



PAVOL SVABA — TRAN VAN TRUNG — PAUL WOLF

Conversely, given a cover α and an element y ∈ G, to determine any el-
ement x ∈ ᾰ−1(y) it is necessary to obtain any one of the possible factor-
izations of the type (2.1) for y and determine indices j1, j2, . . . , js such that
y = a1,j1 · a2,j2 · · ·as,js . This is possible if and only if α is factorizable. Once
a vector (j1, j2, . . . , js) has been determined, ᾰ−1(y) = τ(j1, j2, . . . , js) can be
computed efficiently.

Assume that α = [A1,A2, . . . ,As] is a cover for G. Let g0, g1, . . . , gs ∈ G, and
consider β = [B1,B2, . . . ,Bs] with Bi = g−1

i−1
Aigi. We say that β is a two sided

transform of α by g0, g1, . . . , gs; in the special case, where g0 = 1 and gs = 1,
β is called a sandwich of α. It is clear that β is a cover for G.

Two covers (logarithmic signatures) α, β are said to be equivalent if ᾰ = β̆.
For example, if β is a sandwich of α, then α and β are obviously equivalent.

A block Ai of a cover is called normalized if Ai contains the identity element
of the group, i.e., idG ∈ Ai. It is obvious that by using a sandwich transformation
with gi ∈ Ai for i = 1, . . . , s− 1 we can transform α to an equivalent β having
all (s− 1) blocks normalized, the last block Bs is in general not normalized.

Let α = [A1,A2, . . . ,As] be a LS for a finite group G. Consider k blocks
Ai1 , . . . ,Aik of α. Define

B := Ai1 ·Ai2 · · ·Aik = {ai1 · ai2 · · ·aik |aij ∈ Aij , j = 1, . . . , k}.

We call B a fused block of Ai1 , . . . , Aik . If we apply fusion operations to the
blocks of α we generally obtain a cover β = [B1, . . . ,Bt] for a subset of G, where
t < s. However, if G is abelian, then β remains a LS for G. Usually β may not
necessarily be equivalent to α, and we call β a fused logarithmic signature of α.

In the rest of the paper we assume that multiplication in the groups is taken
to be constant.

3. Algorithms for factorization with respect to TLS

In this section we present algorithms for factorization with respect to TLS
for finite groups.

We first present a generic algorithm for factoring with respect to any TLS α
for any group G (abelian or non-abelian).

The number of steps required for the algorithm is O(
∑s

i=1 |Ai|). If G is a per-
mutation group of degree n, there exist algorithms for solving the membership
problem for G in polynomial time with respect to n by using a strong generat-
ing set.

Now let G be a finite abelian group. In the following we show that there is
a factoring algorithm for TLS of G having a time complexity of O(w).
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Algorithm 1 Generic Algorithm

Input: G: a finite group, α = [A1,A2, . . . ,As] a TLS for G constructed from
a chain of subgroups G = G0 > G1 > · · · > Gs = 1 of G, g ∈ G.

Output: ai ∈ Ai such that g = a1 . . .as.

1: Find a unique element a1 ∈ A1 such that g1 = a1 · g
−1 ∈ G2. Find a unique

element a2 ∈ A2 such that g2 = a2 · g
−1
1 ∈ G3. Continue this process until

As. Then we have g = a1 . . .as as a factorization of g with respect to α.

Again let α = [A1,A2, . . . ,As] be a TLS for G constructed from a chain
of subgroups G = G0 > G1 > · · · > Gs = 1. Since G is abelian, each Gi is
a normal subgroup of G. Therefore we can form the quotient group Ḡ(i) := G/Gi

for i = 0, . . . , s, where

Ḡ(i) := G/Gi = {Gi · g | g ∈ G}.

The elements of Ḡ(i) are denoted by ḡ(i), where

ḡ(i) = φ(i)(g) and φ(i) : G −→ Ḡ(i)

defined by φ(i)(g) = Gi · g is the canonical homomorphism.

For each i = 1, . . . , s define ᾱ(i) =
[

Ā
(i)
1 , . . . , Ā

(i)
i

]

with Ā
(i)
j = φ(i)(Aj).

Note that the blocks Ā
(i)
i+1

, . . . , Ā
(i)
s in the quotient group Ḡ(i) are viewed as

blocks of size 1 with the identity as their unique element. Therefore we ignore
them all. For each i = 1, . . . , s define πi to be the permutation in Sri which sorts
the elements of Ai according to a certain order, for instance, numerical order.
When applying πi to Ai for all i = 1, . . . , s we obtain a TLS β = [B1,B2, . . . ,Bs].
The factorization with respect to α can obviously be done via β and πi. Precisely,
if g = a1j1 . . .asjs is a factorization of an element g ∈ G with respect to β,
then g = a1π−1

1
(j1)

. . .asπ−1
s (js)

is a factorization with respect to α, where π−1
i

is the inverse of πi. We now present an algorithm for factoring with respect
to a sorted TLS.

The main complexity of the factorization in the step i depends on the search

of element ā
(i)
i in Ā

(i)
i . This can be done in time ofO(log2 |Ai|), since the elements

of Ai are sorted. Hence

O

(

s
∑

i=1

log2 |Ai|

)

= O(w)

is the complexity of Algorithm 2. The only extra operation for factoring with
respect to an unsorted TLS is the application of the inverse permutations π−1

i

to the result obtained from a sorted TLS, as discussed above. Moreover,
computing with each πi can be carried out in constant time. Hence, we obtain
the following theorem as a consequence of Algorithm 2.
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Algorithm 2 Factorization with TLS

Input: G: abelian group, α = [A1,A2, . . . ,As] a sorted TLS for G constructed
from a chain of subgroups G = G0 > G1 > · · · > Gs = 1 of G, g ∈ G.

Output: ai ∈ Ai such that g = a1 . . .as.
1: Using the chain of quotient groups Ḡ(s−1), . . . , Ḡ(1), the chain of TLS

ᾱ(s−1), . . . , ᾱ(1), and the chain of elements ḡ(s−1), . . . , ḡ(1), we carry out the
factorization of g as follows.

First, find the unique element ā
(1)
1 ∈ ᾱ(1) = [Ā

(1)
1 ] such that ḡ(1) = ā

(1)
1

(note that Ā
(1)
1 is identical to the quotient group G/G1 := Ḡ(1)).

In the quotient group Ḡ(2) we have ᾱ(2)= [Ā
(2)
1 , Ā

(2)
2 ] and the element ḡ(2)

has a factorization ḡ(2) = ā
(2)
1 · ā

(2)
2 with respect to ᾱ(2), where ā

(2)
1 cor-

responds to ā
(1)
1 in Ḡ(1), which is already known. So we can compute

ā
(2)
2 = (ā

(2)
1 )−1 · ḡ(2).

From the known factorization of ḡ(2) = ā
(2)
1 · ā

(2)
2 with respect to ᾱ(2) we

obtain a factorization of ḡ(3) = ā
(3)
1 · ā

(3)
2 · ā

(3)
3 with respect to ᾱ(3), where

ā
(3)
3 = (ā

(3)
2 )−1 · (ā

(3)
1 )−1 · ḡ(3) and ā

(3)
1 , ā

(3)
2 are elements in Ḡ(3) having

their images under the canonical homomorphism as ā
(2)
1 and ā

(2)
2 in Ḡ(2),

respectively.
Continuing this process in (s−1) steps we obtain a factorization of ḡ(s−1) =

ā
(s−1)
1 . . . ā

(s−1)
s−1 with respect to ᾱ(s−1) in the quotient group Ḡ(s−1). Finally

we obtain a factorization of g = a1 · · ·as−1 · as with respect to α, where
as = a−1

s−1 · · ·a
−1
1 · g, and a1, . . . ,as−1 are the elements in A1, . . . ,As−1

(respectively) giving the corresponding elements ā
(s−1)
1 , . . . , ā

(s−1)
s−1 in Ḡ(s−1).

Theorem 3.1. Any transversal logarithmic signature for a finite abelian group
is tame.

Remark 3.2. Algorithm 2 can be applied to a TLS for a non-abelian group
if each subgroup of the chain is normal in the underlying group. In particular,
for a Hamiltonian group (a non-abelian group in which any subgroup is normal)
any TLS is tame.

4. Algorithms for factorization with respect to FTLS

In this section we present algorithms for factoring group elements with re-
spect to a fused transversal logarithmic signature (FTLS) for abelian groups. Let
α = [A1,A2, . . . ,As] be a transversal logarithmic signature of type (r1, . . . , rs)
for an abelian group G. We define the following transformations on α.
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(i) permute the blocks Ai’s,

(ii) permute the elements within blocks Ai,

(iii) replace a block Ai with Aig for some g ∈ G, (as G is abelian, this replace-
ment is in fact an application of a two side transformation on Ai, namely
h−1
i−1

Aihi = Aig, where g = h−1
i−1

· hi),

(iv) replace two blocks Ai and Aj with a single block Ai · Aj = {xy | x ∈ Ai,
y ∈ Aj} (we call this operation the fusion of Ai and Aj).

A logarithmic signature obtained from a transversal logarithmic signature by
applying a finite number of the transformations (i), (ii), (iii) and (iv) is called
a fused transversal logarithmic signature (FTLS).

Definition 4.1. A subset A of a finite abelian group G is called periodic if
there exists an element g ∈ G \ {1} with gA = A. We call such an element g

a period of A.

We refer the reader to [12] for details concerning periodicity properties for
blocks of logarithmic signatures.

Lemma 4.2. Let β = [B1,B2, . . . ,Bt] be a fused transversal logarithmic signature
for an abelian group G. Then the following holds:

(i) At least one block Bi of β is periodic.

(ii) Let x ∈ Bi be a period of Bi and let Ḡ = G/〈x〉 be the quotient group
of G modulo the cyclic group 〈x〉. Then the logarithmic signature β̄ =

[B̄1, B̄2, . . . , B̄t] induced from β is a FTLS for Ḡ.

P r o o f. (i) Let α = [A1,A2, . . . ,As] be a transversal logarithmic signature
for G, which is used to create β. Here we may assume that all the blocks
of both α and β are normalized. Thus the block A1, which is a normal subgroup
of G, is contained in some block Bi of β. It is a simple observation that each
element x ∈ A1 \ {1} is a period of Bi.

The second statement (ii) is obvious. �

Lemma 4.2 can be found in [1]. It is used by B l a c k b u r n, C i d and
M u l l a n to prove that FTLS for elementary abelian 2-groups are tame. The au-
thors have given a group argumentation for the proof without showing details.
We now show an algorithm for the factorization with respect to an FTLS for
any abelian groups based on the Blackburn-Cid-Mullan idea and we determine
its complexity.

Again let α = [A1,A2, . . . ,As] be a transversal logarithmic signature for an
abelian G. Let β = [B1,B2, . . . ,Bt] be a fused transversal logarithmic signa-
ture obtained by applying a finite number of the transformations (i), (ii), (iii)
and (iv) to α. Let g be an element of G which we want to factorize by using β.
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Algorithm 3 Factorization with FTLS

Input: G: abelian group, α = [A1,A2, . . . ,As] a normalized TLS for G con-
structed from a chain of subgroups G = G1 > G2 > · · · > Gs+1 = 1 of G,
β = [B1,B2, . . . ,Bt] a FTLS of type (r1, . . . , rt) obtained from α, g ∈ G.

Output: bi ∈ Bi such that g = b1 · · ·bt.
1: (a) Find a period x1 for a periodic block Bi.

(b) Consider β̄(1) = [B̄
(1)
1 , B̄

(1)
2 , . . . , B̄

(1)
t ] induced by β in the quotient group

Ḡ(1) = G/〈x1〉. (Then β̄ is an FTLS for Ḡ by Lemma 4.2. β̄ is of type
(r1, . . . , ri−1, ri/δ1, ri+1, . . . , rt), where δ1 is the order of x1.)

(c) Define ḡ(1) to be the induced element of g in the quotient group Ḡ(1).

Repeat (a), (b) and (c) for β̄(1), Ḡ(1) and ḡ(1) to obtain β̄(2), Ḡ(2) and ḡ(2),

where Ḡ(2) = Ḡ(1)/〈x̄2〉 and x̄2 is a period of some block B̄
(1)

j . Continuing
this process we eventually obtain a trivial LS β̄(u) for the trivial group Ḡ(u)

after a finite number of steps, say u. Also, the induced element ḡ(u) ∈ Ḡ(u)

becomes the identity element.

2: Working backward from β̄(u), β̄(u−1), . . . to β̄(1) we can factorize g with re-
spect to β as follows. Here, we describe one step of the factorization process.
First note that β̄(i) and β̄(i−1) have all blocks of the same type except
one block of β̄(i−1) containing the period x̄(i−1) which is used to de-
fine β̄(i) from β̄(i−1). W.l.o.g. we may assume that this periodic block is

the first block B̄
(i−1)
1 of β̄(i−1) =

[

B̄
(i−1)
1 , B̄

(i−1)
2 , . . . , B̄

(i−1)
t

]

. Let β̄(i) =
[

B̄
(i)
1 , B̄

(i)
2 , . . . , B̄

(i)
t

]

. Assume by induction that ḡ(i) = b̄
(i)
1j1

· b̄
(i)
2j2

· · · b̄
(i)
tjt

is

a known factorization of ḡ(i) with respect to β̄(i) (i.e., b̄
(i)
j ∈ B̄

(i)
j , j =

1, . . . , t). Now ḡ(i−1) is known since ḡ(i) is known by the induction assump-

tion. Let ḡ(i−1) = b̄
(i−1)

1k1
· b̄

(i−1)

2k2
· · · b̄

(i−1)

tkt
be a factorization of ḡ(i−1) with

respect to β̄(i−1). Then we have km = jm for m = 2, . . . , t.

Hence the element b̄
(i−1)

1k1
∈ B̄

(i−1)
1 is uniquely determined by

b̄
(i−1)

1k1
= ḡ(i−1) ·

(

b̄
(i−1)

tjt

)−1

· · ·
(

b̄
(i−1)

2j2

)−1

.

Here we assume that all the blocks Bi’s of β are normalized. The main idea
of factoring with respect to an FTLS for elementary abelian 2-groups, see [1],
is as follows: Find a period x for a certain block of β and transform β to β̄
in the quotient group Ḡ = G/〈x〉. Again β̄ is an FTLS for Ḡ by Lemma 4.2,
so the process is repeated with β̄ and Ḡ until we reach the trivial quotient group,
and the resulting FTLS becomes a trivial logarithmic signature. In this process
we also keep track of the induced elements of g in the quotient groups.
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Based on the idea of B l a c k b u r n, C i d and M u l l a n we show the factoring
algorithm with respect to an FTLS for abelian groups.

In the following we attempt to determine the complexity of Algorithm 3 for
elementary abelian p-groups. For the sake of simplicity we also asumme that
ri = r for i = 1, . . . , t and |Ai| = z for i = 1, . . . , s. If we would not have the
assumption, it would be more involved to compute the complexity.

Let G be an elementary abelian p-group. Let α = [A1,A2, . . . ,As] be a TLS
constructed from a chain of subgroups G = G1 > G2 > · · · > Gs+1 = 1 of G
of type (z, . . . , z) (i.e., |Ai| = z for all i = 1, . . . , t). We also assume that ri = r

for all i = 1, . . . , t. So, we have ri = pe for i = 1, . . . , t.

One main part of the complexity of the algorithm is the finding of periodic
elements in the process of constructing induced FTLS for the quotient group
Ḡ(j) for each j = 1, . . . ,u, where u is the smallest number such that the quotient
group Ḡ(u) becomes the identity group.

To start with we have to find a period in a certain block of β. There are t

possible choices for such a block, say Bi. For an x ∈ Bi, verifying whether x
is a period, i.e., xBi = Bi, requires a complexity of Θ(|Bi| log2 |Bi|). This com-
plexity is composed of computing |Bi| times multiplications x · bi1, . . . , x · bir

and of checking if x · bij ∈ Bi. The checking has a complexity Θ(log2 |Bi|), if
block Bi is sorted (otherwise it would be of complexity Θ(|Bi|)). Therefore, we
will assume that each block Bi is sorted once. Sorting of Bi has a complexity
ofΘ(|Bi| log2 |Bi|). For each step of moving to the quotient group the unique block
of β̄(k) whose size is decreased needs also to be sorted (more precisely, if x is a pe-

riod in B̄
(k−1)

i , the block B̄
(k)
i of β̄(k) in the quotient group Ḡ(k) = Ḡ(k−1)/〈x〉

is of size |B̄
(k)
i | = |B̄

(k−1)

i |/p and we have to sort B̄
(k)
i ).

As the computation of pointer elements bi’s in the factorization of g in step 2
is deterministic, we may regard the time spent for this step as being constant
and therefore its complexity will be neglected.

The total number of operations in step 1 comprises the number of operations
for finding periods, denoted by A, and the number of operations for block sorting,
denoted by B. Here we have

A = t
(

(

r/p0
)2

log2
(

r/p0
)

+ (r/p)2 log2(r/p) + · · ·+
(

r/pe−1
)2

log2
(

r/pe−1
)

)

=
t

logp 2

e
∑

i=1

(p2)ii ,

and

B = t
(

(

r/p0
)

log2
(

r/p0
)

+ (r/p) log2(r/p) + · · ·+
(

r/pe−1
)

log2
(

r/pe−1
)

)

=
t

logp 2

e
∑

i=1

pii .

9
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By using the formula

n
∑

i=1

ixi =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2
,

where x 6= 1, the total number of operations in step 1 amounts to

A+ B =
t

logp 2

(

e(p2)e+2 − (e+ 1)(p2)e+1 + p2

(p2 − 1)2

+
epe+2 − (e+ 1)pe+1 + p

(p− 1)2

)

= Θ

(

t

logp 2
(p2)e logp pe

)

= Θ
(

tr2 log2 r
)

.

We record the result of the above analysis in the following theorem.

Theorem 4.3. Let G be a finite abelian p-group and let β be an FTLS of type
(r1, r2, . . . , rt) = (r, r, . . . , r) for G obtained from a TLS of type (z1, . . . , zs) =

(z, z, . . . , z). Then the factorization of an element g ∈ G with respect to β using
Algorithm 3 has a complexity of Θ

(

tr2 log2 r
)

.

The complexity as given in Theorem 4.3 shows that if the sizes for r are
small, Algorithm 3 could still be considered as “efficient”, but if r is getting
large, Algorithm 3 will no longer be efficient. And because of the term r2 in-
volved in the complexity estimate, Algorithm 3 cannot be used to prove the
tameness of FTLS for abelian groups (i.e., the complexity Θ

(

tr2 log2(r)
)

cannot
be expressed in terms of O(wc), where c is a constant and w is the width of G).

In the next section we show that if the information of the transformations
used for generating an FTLS β from a TLS is known, then we can construct
a factoring algorithm proving the tameness of β.

4.1. Factorization with respect to FTLS by using trapdoor

information

Assume that an FTLS β for an abelian group G is constructed from a TLS α

using the four transformations (i), (ii), (iii) and (iv) as described at the beginning
of the section. To be more precise, let the TLS α = [A1,A2, . . . ,As] of type
(z1, . . . , zs) be derived from a chain of subgroups G = G0 > G1 > · · · > Gs = 1
of G.

In general, there is no particular order of using the transformations (i), (ii),
(iii) and (iv), but for the sake of clarity we will generate an FTLS according
to the following steps.

10



LOGARITHMIC SIGNATURES FOR ABELIAN GROUPS...

(T1) (Fusion) Perform a fusion of the blocks of α. The fusion transformation (iv)
will be done as follows.

– Select a permutation ϕ ∈ Ss and compute a logarithmic signature α ′

from α by
α ′ =

[

A ′

1, . . . ,A
′

s

]

=
[

Aϕ(1), . . . ,Aϕ(s)

]

.

– Select a partition P = {P1, . . . , Pt} on the set {1, . . . , s} with P1 =

{1, . . . , i1}, P2= {i1+1, . . . , i2}, . . . , Pt= {is−1+1, . . . , is} with |Pj| = uj,
for j = 1, . . . , t. Fusing the blocks of α ′ according to this partition
yields a logarithmic signature β ′ := [B ′

1, . . . ,B
′

t] of type (r1, . . . , rt)
with B ′

j = A ′

ij−1+1 ·A
′

ij−1+2 · · ·A
′

ij
,

and rj = |A ′

ij−1+1| · |A
′

ij−1+2| · · · |A
′

ij
| for j = 1, . . . , t and i0 = 0.

(i.e., each block B ′

i is obtained by fusing certain consecutive blocks
of α ′.)

(T2) Select random permutations πj ∈ Srj , j = 1, . . . , t. Permute the positions of

the elements of each block B ′

j with permutation πj. Let β
′′ =

[

B ′′

1 , . . . ,B
′′

t

]

denote the resulting logarithmic signature obtained from β ′ after this step.

(T3) Select random elements gj ∈ G and replace each block B ′′

j of β ′′ with

B ′′′ := B ′′

j · gj. The resulting object is a logarithmic signature β ′′′ =
[

B ′′′

1 , . . . ,B ′′′

t

]

.

(T4) Select a random permutation ξ ∈ St and permute the blocks of β ′′′ by
using ξ. The result obtained from this last step is our constructed FTLS
β = [B1, . . . ,Bt].

We call the information about the transformations T1, T2, T3 and T4, which
are used to generate an FTLS β from a TLS α, the trapdoor information.

Proposition 4.4. Let α :=
[

A1, . . . ,As

]

be a transversal logarithmic signature

for an abelian group G. Let β ′ :=
[

B ′

1, . . . ,B
′

t

]

be a fused transversal logarithmic
signature for G obtained from α by using (only) the fusion transformation T1.
Then β ′ is equivalent to a logarithmic signature α ′ obtained from α by permuting
its blocks with the permutation used by T1.

P r o o f. Now suppose that β ′ is given. Let α ′ =
[

A ′

1, . . . ,A
′

s

]

be the logarith-
mic signature obtained from α by using the permutation ϕ ∈ Ss for transforma-
tion T1, i.e., α ′ =

[

A ′

1, . . . ,A
′

s

]

=
[

Aϕ(1), . . . ,Aϕ(s)

]

.

Then it is clear that β ′ is equivalent to α ′. �

As a consequence of Proposition 4.4 we see that instead of factoring with
respect to an FTLS β we can factorize with respect to α by using the knowl-
edge of transformations T1, T2, T3 and T4. This is presented in the following
algorithm.

11
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Algorithm 4 Factorization with FTLS by using trapdoor information

Input: α, ϕ ∈ Ss, P = {P1, . . . ,Pt}, πi ∈ Sri , gi ∈ G, i = 1, . . . , t, ξ ∈ St, and y ∈ G.

Output: x = x1||x2|| · · · ||xt, such that y = β̆(x).

1: Compute y ′ = y ·
∏t

i=1
gi (here, g1, . . . , gt are elements in G which are used for

transformation T3). Write y ′ = y ′

1
||y ′

2
|| · · · ||y ′

s. Each y ′

i is of ⌈log2(ri)⌉ bit length.

2: Factorize y ′ with respect to α by using Algorithm 2. Let denote j ′
1
, . . . , j ′s the indices

obtained by this factorization.

3: Compute jℓ = j ′
ϕ−1(ℓ)

for ℓ = 1, . . . , s.

4: According to Pℓ = {i1, i2, . . . , iuℓ
} set x ′

ℓ = ji1‖ji2‖ · · · ‖jiuℓ
for ℓ = 1, . . . , t.

5: Compute x ′′

ℓ = π−1

ℓ (x ′

ℓ) and finally compute xℓ = x ′′

ξ−1(ℓ)
for ℓ = 1, . . . , t.

In Algorithm 4 we may assume that the performing steps 1, 3, 4, 5 will take
a constant time. Thus the complexity for factoring y with respect to β is reduced
to the complexity of factoring y ′ with respect to the TLS α in the step 2, which
is O(w) by Theorem 3.1, where w = ⌈log2 |G|⌉. Thus we have the following
theorem.

Theorem 4.5. Let β := [B1, . . . ,Bt] be an FTLS constructed from a TLS
α := [A1, . . . ,As] for an abelian group G by using the transformations
T1, T2, T3 and T4. Then β is tame if the trapdoor information about these
transformations is known.

5. Conclusion

We have presented factorization algorithms and their computational com-
plexities for the classes of transversal and fused transversal logarithmic signa-
tures for finite abelian groups. The results have shown that transversal loga-
rithmic signatures are tame, however, fused transversal logarithmic signatures
are tame when trapdoor information is used. We have also presented a factor-
ization algorithm for fused transversal logarithmic signatures based on the idea
of B l a c k b u r n, C i d and M u l l a n and computed its complexity. It is an
interesting open problem to decide whether or not fused transversal logarithmic
signatures for abelian groups are tame without using the trapdoor information.
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